

Cambridge Chemistry Challenge Lower 6th

June 2020

Marking scheme for teachers

(please also read the additional instructions)

mark 8 7 7 10 8 11 9 60

[3]

1(c)

1(d)

Page total

[4]

1(d)

1(e)

(i) Standard enthalpy change of formation:

$$\Delta_r H^o = 6 \times \Delta_f H^o (CO_2) + 3 \Delta_f H^o (H_2O) - \Delta_c H^o (benzene)$$

$$= (6 \times -393.5) + (3 \times -285.8) - (-3301)$$

$$= 82.60 \text{ kJ mol}^{-1} \text{ (4 sig. fig.)}$$

(ii) Standard enthalpy of combustion:

Dewar benzene is higher in energy than normal benzene which means more energy will be given out during the combustion.

$$\Delta_{\rm c} H^{\rm o}$$
 (Dewar benzene) = $\Delta_{\rm c} H^{\rm o}$ (benzene) - 252 kJ mol⁻¹ = -3553 kJ mol⁻¹ or -3550 kJ mol⁻¹ (3 sig. fig.)

[4]

[2]

[1]

(i) Isomers:

Marks available

10 marks for all of 1(f)

[One mark if all three structures are correct Half a mark for two correct structures]

1(f)

(ii) Isomers:

(iii) Isomers:

Page total 10

6 marks for all of 1(g)

[2]

1(g)

(i) Same:

L = R; N = M; P = S [-1 for any wrong pair; 0 minimum]

(ii) N/M is an optical isomer of P/S ✓

[if anything else, 0 marks]

(iii) Total number:
✓4 structures (L/R, N/M, P/S, and Q)

(iv) Number:

three pairs of isomers of DEWAR benzene

1(h) Number of days:

each half-life reduces amount remaining by 0.5. We want amount of remaining Dewar-benzene to be 0.01 of the starting amount. If number of half-lives is n:

$$(0.5)^{n} = 0.01$$

taking logs:

$$n \log(0.5) = \log(0.01)$$

$$n = log(0.01) / log(0.5) = 2 / log(2) = 6.644$$

Each half-life is 2 days, so 6.644 half-lives are 2 x 6.644

[Give 1 mark if answer is between 13 and 14 days but not exact]

2/->		Marks available
2(a) (i)	Equation:	[1]
	$Sk(s) + 2HCl(aq) \longrightarrow SkCl_2(aq) + H_2(g)$	
(ii)	Oxidised: Sk [half each]	[1]
	Reduced: Hydrogen (or H ⁺)	
(iii)	Structure:	[1]
(iv)	Name: ethanoic acid	[1]
(v)	Angle:	[1]
	120° (or just less than) [allow 115° to 120°] ✓	
(vi)	Angle: 90° (the p orbitals are all at 90° to each other)	[1]
(vii)	Unit:	[4]
	CI CI CI SK CI SK	[1]
2(b)		
(i)	Oxidation states: +2 in HgCl ₂ and +1 in Hg ₂ Cl ₂ [half each]	[1]
(ii)	Equation 1:	[2]
	$SkCl_2 + 2HgCl_2 \longrightarrow SkCl_4 + Hg_2Cl_2 \checkmark$	
	Equation 2: $SkCl_2 + HgCl_2 \longrightarrow SkCl_4 + Hg$	
(iii)	Equation: $SkCl_4 + 2H_2O \longrightarrow SkO_2 + 4HCI \checkmark$	[1]
		Page total 11

